Journal of Organomefaliic Chemise, 94 **(1975)** *251-257 @ Ekevier* **Sequoia S.A., Lausanne -Printed in The Netherlands**

THE REACTIVITY OF trans- $[\text{lrCl(CO)L}_2]$ (L = TERTIARY PHOSPHINE) **AND RELATED COMPOUNDS***

BERNARD L. SHAW

School of **Chemistry,** *The* **University,** *Leeds* **LS2 9JT (Great** *Brifain)*

Summary

An example of anchimeric assistance in an oxidative addition reaction is discussed. Stable large ring (1% to 45-membered) complexes have been prepared from diphosphines t -Bu₂ $P(CH_2)_nP$ - t -Bu₂ ($n = 9, 10$ or 12). Some unusual iridium **chemistry, including an iridium(I1) compound, has been generated from ligands such as di-t-butyl-Z-methoxyphenylphosphine.**

There have been many studies on oxidative addition reactions of compounds of the type trans-[IrCl(CO) L_2] (L = tertiary phosphine or tertiary arsine) [1-3]:

 $[Ir^ICl(CO)L₂] + A-B \rightarrow [Ir^{III}Cl(A)(B)(CO)L₂]$

Three mechanisms for such- an addition have been established.

(1) Nucleophitic attack by ihe metal

This is exemplified by the addition of methyl iodide. Kinetic studies 141 show that the addition involves a polar transition state:

 $Ir^{\delta^*} \longrightarrow CH_{\delta} - I^{\delta^-}$

with a large negative ΔS^{\ddagger} . Addition is promoted by polar solvents.

(2) Concerted *addition*

The **addition of dihydrogen is thought to be concerted. It involves a**

much less polar transition state than in *1* **and is less affected by changing the solvent.**

^{*} Presented at tbe Symposium on Metat Carbonyi Chemistry, dedicated to Professor Walter Hieber. held at Ettal (West Germany). July 21st-July 27th, 1974.

(3) Radical chain

Recently **some oxidative addition reactions involving sterically hindered organic halides have been shown to involve free radicals [5]_ They require an initiator such as dioxygen. An iridium(I1) intermediate has been postulated:**

 $\text{Ir}^{\text{I}} + \text{Q} \rightarrow \text{Ir}^{\text{II}} - \text{Q}$ (Q = initiator)

The tendency for *trans-[fiCl(CO)L,] to* **undergo oxidative addition depends on the electronic and steric effects of L but it is frequently very difficult to assess their** relative **importance. We have shown that the realtive tendencies of acids** such as HCl, CH₃COOH or PhCOOH to add to [IrCl(CO)L₂] can be readily **studied spectrophotometrically [6,7]** _ **One can therefore arrange ligands, L, in order of decreasing stability of the adduct (Table 1). As can be seen there is an excellent correlation between this ligand order and** *values* **of v(Ir-H) for the adducts- It is suggested that 3teric effects are more important than electronic effects in determining the above order and that these steric effects govern the strength of the bonding of the chlorine ligand** *trans* **to hydride, which in turn** influences the value of $\nu(\text{Ir}-\text{H}).$

Steric and electronic effects also control the rates of oxidative addition **reactions_ The electronic effect has been studied for the addition of methyl** iodide to *trans*-[MCl(CO) $\{P(4-ZC₆H_a)₃\}$ ₂] (M = Ir or Rh). The steric effects of **Psubstituted triphenylphosphines are assumed to be the same. The relative** rates of CH₃I addition were (M = Ir) $Z = OMe > Me > H > Cl$ [8]; (M = Rh) $Z = OMe > H > F$ [9]; i.e. the rate is increased by electron donation in agree**ment with the metal acting as a nucleophile- However the effect is small e.g. for lr the ttis-(4methoxyphenyl)phosphine complex reacts only about 10 times** faster than the triphenylphosphine complex.

We have looked for and found another type of electronic effect in oxidative addition reactions. Since the addition of CH₃I to *trans*-[IrCl(CO)L₂] in-

ŧ

TABLE 1

L.	10^{2} k (1 mol ⁻¹ s ⁻¹)	ΔH^{\dagger} (kJ mol ⁻¹)	ΔS^{\ddagger} (J K ⁻¹ mol ⁻¹)
PMe ₂ Ph	4.7 ± 0.15	46.4 ± 0.8	-114 ± 3
$PMe2(2-MeOC6H4)$	± 25 530	27.6 ± 0.8	-133 ± 3
$PMe2(4-MeOC6H4)$	6.75 ± 0.2	38.1 ± 7.5	-138 ± 25

RATE DATA FOR THE ADDITION OF CH₃I TO trans-[IrCl(CO)L₂] IN TOLUENE AT 298.3 K

volves a polar transition state there is the possibility of neighbouring group participation (anchimeric assistance or intramolecular catalysis) at the rate determining step. We therefore studied the kinetics of addition of CH₃I to *trans-* $[\text{IrCl(CO)}]$ ₂] with $L = PMe_2Ph$, dimethyl-2-methoxyphenyl- or dimethyl-4**methoxyphenyl-phosphine anticipating some anchimeric assistance by the 2-methoxyl group. The additions are first order in [CH31] and in [complex] (Table 2 gives the rate data). The dimethyl-2-methoxyphenylphosphine complex reacts much (ca. 100 times) faster than the other two, the rate enhancement being due mainly to a very small enthalpy of activation (ca. 6 kcal). We interpret this rate enhancement as a direct Me0 ---1r interaction in the transition state I [lo]. Clearly such an effect (intramolecular catalysis) might be of use** in increasing the rates of some of the important Pd-PPh₃ catalysed reactions de**veloped by Heck and coworkers [13,14]. Thus by using say diphenyl-2-methoxyphenylphosphine instead of PPh₃ one might be able to use aryl or vinyl bromides or even chlorides instead of the more expensive iodides.**

TABLE 2

The second part of this paper is concerned with some large ring compounds formed from long chain diphosphines of the type $t-Bu_2P(CH_2),P-t-Bu_2$ ($n=9$, **10 or 12). We have found that these diphosphines with bulky end groups give frans-bonding mononuclear (II), binuclear (III) and trinuclear (IV) complexes** with from 12 - to 45 -membered rings. (M = metal atom) $[11]$. Thus on treating IrCl $_6^{3-}$ with carbon monoxide and then adding t-Bu₂P(CH₂)₁₀P-t-Bu₂ a mixture of iridium(I) carbonyl complexes *trans*-[IrCl(CO){t-Bu₂P(CH₂)₁₀P-t-Bu₂}], ($x =$ **1 or 2) is formed. The mononuclear complex (13-atom ring) sublimes slowly (ca. lSO"C/l aim) into beautiful yellow needles. Its structure has been determined by X-ray diffraction (R. Mason and F.C. March) and is shown in Figs. 1 and 2. The carbonyl group lies in** *agauche* **position with respect to the four t-butyl groups. The '*P NMR spectrum at 25°C in deuteriochloroform shows two resonances probably due to the two rotamers with either CO or Cl in the**

gauche **position with respect to the four t-butyl groups. Recently the X-ray structures of the two binuclear complexes have been determined,** *tram-[RhCl-* (CO) { t -Bu₂P($CH_2P(CH_2)_{10}P$ -t-Bu₂}]₂ (R. Mason and F.C. March) and *trans*- $\text{[PdCl}_2\{\text{t-Bu}_2\}\text{(CH}_2)_{10}\text{P-t-Bu}_2\}_{2}$ (W.S. McDonald and M.C. Norton); both have **26membered rings. The structure of the palladium complex is shown jn Fig- 3. Clearly these very large ring compounds, of which trans-[IrCl(CO){t-Bu*P-** $(CH₂)₁₂P-t-Bu₂$, with a 45-membered ring is the largest, should show some **interesting conformational and chemical properties_**

The last part of my paper is concerned with some unusual iridium chemistry generated from complexes with di(t-butylphosphine)phenoxide ligands_ This is

Fig. 1. The structure of trans-[IrCl(CO){t-Bu₂P(CH₂)₁₀P-t-Bu₂} I showing the 13-atom ring.

Fig. 2. trans-[IrCl(CO){t-Bu₂P(CH₂)₁₀P-t-Bu₂}]. View along the P-Ir-P bonding.

outlined in Scheme l_ When chloroiridic acid is treated with carbon monoxide and di-t-butyl (2-methoxyphenyl)phosphine in boiling 2-methoxyethanol, de**methylation occurs and the yellow iridium(I) carbonyl species V is formed. A benzene solution of this compound is stable in the absence of air but in the** presence of air it starts to go blood red.on the surface and gives mainly the **planar iridium(I1) species VI together with the five-coordinate iridium(III) hydride VII, which is purple. This iridium(II1) species is coordinatively unsaturated**

Fig. 3. The structure of trans-[PdCl₂ {t-Bu₂P(CH₂)₁₀P-t-Bu₂}]₂ showing the 26-atom ring.

and reacts with carbon monoxide rapidly to give the white 6-coordinate hydridocarbonyl VIII. The red paramagnetic iridium(I1) species VI with P-O = di(tbutylphosphino)6-methoxyphenoxide takes up dioxygen reversibly to give the purple dioxygen adduct IX. This dioxygen adduct gradually changes to the redpurple compound X which has one of the t-butyl methyls metallated. The redpurple metallated compound X is coordinatively unsaturated and reacts with carbon monoxide to give the iridium(II1) carbonyl XI. The iridium(I1) species also reacts with carbon monoxide to give a green compound, this immediately goes deep blue in air and gradually red and then colourless, giving XI. Other reactions are also mentioned in Scheme 2, Both the iridium(I1) complexes with P-0 either di(t-butylphosphino)phenoxide or di(t-butylphospbino)6_methoxyphenoxide have had their structures proved by X-ray diffraction studies [123 _

I am extremely grateful to my coworkers listed in the references and to the organisers of this excellent symposium. I also offer my best wishes to Professor Hieber.

References

- 1 J.P. Collman, Accounts Chem. Res., 1 (1968) 136.
- **L- Vaska. Accounts Chem. Res.. l(1968) 335.**
- **J. Halpem. Accounts Chem. Rer. 3 <1968) 386.**
- **P.B. Chock and J. Halpem. J. Amer. Chem. Soc-, 88 (1966) 3511.**
- **J-S_ Bradley. D-E. Connor. D. Dolphin. J-A. Linger and J.A. Osbom. J. Amer. Chem. SOC.. 94 (1972) 4043.**
- **6 B-L- Shaw and R-E_ Stainbank. J. Chem- Sac. Dalton. (1972) 223.**
- **7 B-L_ Shaw and RX. Stainbank. I Chem. Sot. A. (1971) 3716.**
- **8 R. Ugo. A. Pasini. A. Fusiand S. Cenini. J. Amer. Chem. Sot.. 94 <1972) 7364.**
- **9 J-C. Douek and G. Wilkinso n. J. Chem. Sot. A. <1969) 2604.**
- **10 E.M. MiUer and B.L. Shaw. J. Chem. Sot. Dalton, (197-z) 480.**
- **11 A.J. Prude. B-L. Shaw and B. Weeks. Chem. Commun.. (1973) 947.**
- **12 R. Mason,** K-M. **Thcmas. H.D. Empsall. S.R. Fletcher. P-N. Heys. E_M_ Hyde. C.E. Jones and B.L.** Shaw. **Chem_ Commun.. <1974) 612,**
- **13 A. Schoenberg. I. Rartoletti and R.F. Heck. J. Org. Chem.. 23 (1974) 3318.**
- 14 A. Schoenberg and R.F. Heck, J. Org. Chem., 23 (1974) 3327.